

www·entrytest·com

NATIONAL UNIVERSITY OF SCIENCE & TECNOLOGY (NUST

Engineering Sample Admission Test 01

MATHEMATICS:

Dire	ections: For each question below you are given four cho APPROPRIATE ANSWER ALL ANSWER MUST BE GIVEN ON TH YOUR ANSWERS MUST BE INDICATED E BY THE WORDS THEMSELVES.	E ANSWER SHEET.	()
1.	Which of the following lists of physical quantities co	onsists only of vectors:	
	(a) Time, temperature, velocity		me, momentum
	(c) Velocity, acceleration, mass		leration, velocity
2.	If $(\vec{a} \times \vec{b})$ points along negative z-axis, then the vector	rs \vec{a} and \vec{b} must lie in	
	(a) .zx-plane	(b) .yx-plane	
	(c) .xy-plane	(d) None of the	above
3.	$k \times \hat{i} = \dots$		
	(a) j (b) $-j$	(c) k	(d) $-k$
4.	What must be changing when a body is accelerating		•
••	(a) The force acting on the body		y of the body
	(c) The mass of the body	(d) The speed of	,
5.	The horizontal range of a projectile is maximum who (a) 30^{0} (b) 45^{0}	en it is thrown at what ang (c) 60^0	le with a certain velocity? (d) 90 ⁰
6.	A paratrooper jumping out of an airplane is an examp	ple of	
	(a) Equilibrium (b) Static Equilibrium (c)	Dynamic Equilibrium	(d) None
7.	The torque on a body will be zero if the angle between	en r and F is zero or:	
	(a) 90° (b) 180°	(c) 270^{0}	(d) None
8.	If we go away from the surface of the earth, a distance	ce equal to the one third of	the radius of the earth, the
	value of g will be multiplied by?	() 1/0	(1) 16/0
	(a) 1/2 (b) 9/16	(c) 1/9	(d) 16/9
9.	For certain values F and d, work done is zero when the	Ŷ	
10	(a) 0^0 (b) 30^0	(c) 90^{0}	(d) 180°
10.	The force acting on a body in the gravitational field at (a) Gravitational mass (b) Weight	at any point is equal to its: (c) Acceleratio	
11		\ /	n (d) Inertia
11.	What is kinetic energy of a body of mass 10 kg mov	•	(d) 25 Joules

Career Channel News

Simple harmonic motion is mathematically represented as

Career Channel

www·entrytest·com

	(a)	.a α− x	(b)	.aα x	((c)) '	V α– x	(d)	F α– x
13.	The	frequency of second p	endu	lum is						
	(a)	1 hertz	(b)	2 hertz		(c)) (0.5 hertz	(d)	None of the above
14.	A bo	ody with frequency f v	vould	comple	ete one vibr	ation in				
	(a)	F seconds	(b)	$\frac{1}{f}$ seco	onds	(c))	1 second	(d)	$\frac{1}{T}$ seconds
15.	The	rate of evaporation de	pend	s upon:						
	(a)	Nature of liquid				(b)		The temperature of	liqui	d and air
	(c)	The area of the expos	sed su	irface of	f the liquid	(d)	.) .	All of the above		
16.	The	coturated vanour proc	ouro c	of a give	n liquida					
10.	(a)	saturated vapour pres Increases with rise in		_	-	(b) 1	Decreases with rise	in te	emperature
	` ′	May increase or decr	_				. 1	Remains unchanged		-
	(c)	temperature				(d)	1 .	temperature		
17.	Supp	pose the co-efficient o	f line	ar expa	nsion of co	pper is 0	.00	0156 per degree C.	Wha	t will be the co-
	effic	eient of volume expans			er sphere pe					
	(a)	Same as that of linea	_					Two times as that o		-
	(c)	Three times as that o		-				One half as that of l		•
18.		gth of metal rod is 100					pan	nsion of metal is 0.0)0002	2K ⁻¹ By how many
	(a)	imeters will it contrac 1.001		n coole 0.150	a through 5	(c)		0.001	(d)	0.01
19.	` ′		` '		otivo nomi	`\			(u)	0.01
19.	THE	Coulomb force in a m				$\operatorname{ttrvity} \mathcal{E}_r$	18 8			E
	(a)	$F' = \frac{\mathcal{E}_r}{F}$	(b)	$F' = \frac{F}{\varepsilon}$		(c))]	extstyle ext	(d)	$F' = \frac{F}{\varepsilon_0 \varepsilon_r}$
20		1		9,						$\sigma_0 \sigma_r$
20.	(a)	acity of a capacitor de The distance between	_	_		(b) T	The	nature of the dielec	etric l	netween the plates
	(c)	The size of the plates		praces				of the above	uic (between the plates
21.	` ′	magnetic force F _m act		n charg	e a when it	` /			oh a r	nagnetic field B is
	give				• q	1110 (05)			5 ** -	
	_	$F_m = q \mathbf{v} \times \mathbf{B}$	(b)	$F_m = q$	$v^2 \times B$	(c))]	$F_m = q v^3 \times B$	(d)	$F_m = q \ v^4 \times B$
22.	A su	bstance which behave	es like	e a magi	net in the pi	resence o	of a	strong magnetic fie	eld is	called
	(a)	Magnets	(b)	Ferro 1	nagnets	(c))]	Electromagnets	(d)	None of the above
23.	In a	circuit, if a resistance	of th	e condu	actor is incr	eased the	en o	current in the circui	t wil	1:
	(a)	Increase	(b)	Decrea	ase (c)	Remain	the	same (d)		ase and then
			` '		. ,			decrea		
24.		phenomenon that the	resist	ance of	a metal fall	ls exactly	y to	zero at a few degre	ees al	bove absolute zero
		illed:	(b)	Lowes	onductivity	(a)	C	par aandustivity	(4)	Low registivity
25	(a)	Conductivity	` '		onductivity	` ′	•	•	(u)	Low resistivity
25.	why	should a resistance b	e intr	oauced	ın a cırcuit	in series	s de	inderately?		

Career Channel

www·entrytest·com

	(a)	To increase current and decrease Voltage	(b)	To decrease current and voltage	(c)	To make curre zero	nt	(d) To mazero	ake voltage
26.		house circuit, all elect ral wires to get: Same current and dif				parallel to each of same current and			
	(c)	Different current but difference			(d) I	Difference currentifference			
27.	Pow	er dissipated in a circu	uit in	the form of 'V' and '	R' can	be determine as:	`		
	(a)	$P = \frac{V}{I}$	(b)	$P = \frac{V^2}{R}$	(c)	$P = \frac{R}{V^2}$	((d) $P = \frac{1}{V}$	$\frac{\mathbf{I}}{7^2}$
28.	•	nan series lies in Visible region	(b)	Ultra violet region	(c) In	nfra red region	(d)	Far-infra r	ed region
29.	Accepath	ording to Bohr's theor	y of l	hydrogen atom, an ele	ectron c	an revolve arour	nd a p	roton indef	initely if its
	` '	A spiral of increasing A circle of an allowed			(b) (d)	A circle of con An ellipse	stantl	y decreasir	ng radius
30.	equa	ording to Bohr's theoration	-						
	(a)	$R_n = \frac{ke^2}{m{v_n}^3}$	(b)	$R_n = \frac{ke^2}{m{v_n}^2}$	(c)	$R_n = \frac{e^2}{m v_n^2}$	(d)	$R_n = \frac{he^2}{mv_n^2}$	2
31.	An i	nteresting application	of la	ser is the production	of three	dimensional ima	ages c	called	
	(a)	Polygons	(b)	Holograms	(c)	Ovals	(d)	None of the	ne above
32.	The	laser device used to fi	agme		ney sto	nes is called			
	` ′	Laser beam	(b)	scanner	Laser	lithotropter	(d)	Ruby laser	r
33.	Proc	luct of x-rays is a reve	rse pl	henomenon of					
	(a)	Photoelectric Effect) (Compton Effect (c) Pai	r Production	(d)	Annihilati	on of matter
34.		nucleus of hydrogen		•	()	T. :	(1)	A 11 C 41	1
25	(a)	Proton	` ′	Deuteeron	(c)	Triton	(d)	All of the	above
35.		nents with atomic num Stable	ober z (b)		(c)	Small	(d)	None of th	ne above
36.		ch of the following pa		•	-				
		α-particle	` '	β-particle		γ-particle	(d)	All of the	above
37.		ch of the following pa		•			<i>(</i> 1)	A 11 O 3	1
	(a)	α-particle	(b)	β-particle	(c)	γ-particle	(d)	All of the	above

Career Channel

www·entrytest·com

- 38. A carbon nucleus emits a particle x and changes into nitrogen according to the equation ${}_{6}C^{14} + {}_{7}N^{14} \rightarrow x$ What is x?
 - (a) An electron
- (b) A proton
- (c) An α-particle
- (d) A neutron

- **39.** During Pair-Production which particles are produced?
 - (a) Proton & Electron
- b) Electron & Neutron
- (c) Electron & Positron
- (d) Proton & Neutron

- **40.** The Solid-State Detector is basically
 - (a) A forward biased PN-junction
 - (c) A forward biased transistor
- **41.** $\sqrt{35}$ is -----
 - A) A prime number
 - C) A whole number
- **42.** \forall a, b, ϵ R a . b = b•a is called
 - A) Closure law of addition
 - C) Commutative law of multiplication
- **43.** In R, the multiplicative identity is
 - A) (
 - C) -1
- **44.** The additive inverse of $\frac{2}{3}$ is
 - A) $\frac{3}{2}$
 - C) $-\frac{3}{2}$
- **45.** The multiplication inverse of 0 is
 - A)
 - C) 0
- **46.** The value of i^7 is
 - A)
 - C) i
- **47.** If z = 2 + 3i then z^{-1} is

1

- A) $\frac{1}{2} + \frac{1}{3}i$
- C) $\frac{2}{13} + \frac{3}{13}i$
- **48.** The modulus of 3 is
 - A)
 - C) -3
- **49.** The multiplicative inverse of 1 2i is
 - A) $\frac{1}{5} + \frac{2}{5}i$

- (b) A reversed biased PN-junction
- (d) A Photocell
- B) An integer
- D) An irrational number
- B) Associative law of addition
- D) Associative law of multiplication
- B) 1
- D) None
- B) $-\frac{2}{3}$
- D) (
- B) -1
- D) Does not exist
- B) -1
- D) -i
- B) $2 + \frac{1}{3}i$
- D) $\frac{2}{13} \frac{3}{13}i$
- B) 9
- D) 3
- B) $-\frac{1}{5} + \frac{2}{5}i$

www·entrytest·com

C)
$$\frac{1}{5} - \frac{2}{5}i$$

 $-\frac{1}{5} - \frac{2}{5}i$

- 50. The set of integers is a subset of
 - The set of natural numbers
 - C) The set of prime numbers
- **51.** {1,2,3,} is -----
 - A) An infinite set
 - C) A singleton set
- **52.** The sets $\{1,2,4\}$ and $\{4,6,8,10\}$ are
 - A) Equal sets
 - Disjoint sets C)
- **53.** Write down the power set of $\{9,11\}$
 - {{9},{11}}
 - C) {{9},{11},{9,11}}
- **54.** Φ = -----
 - A) Α
 - C) A`
- 55. If p and q are two statements then their biconditional 'p iff q' is denoted by
 - $P \Lambda q$ A)
 - C) $P \rightarrow q$
- **56.** The number of subsets of a set having three elements is
 - A)
 - C)
- 57. If $A = \{1,2,3\}$ and $B = \{a,b\}$ then a function from A to B is
 - $\{(1, a), (2, b), (3, a)\}$
 - C) $\{(a, 1), (b, 2)\}$
- **58.** A matrix with a single row is called a
 - Column matrix
 - C) Null matrix
- **59.** A square matrix all of whose elements except the main diagonal are zeros is called a
 - Null matrix C) Symmetric matrix
- **60.** A square matrix A for which $A^t = A$ is called a
- Column matrix A)
- Skew-symmetric matrix
- **61.** Two matrices A and B are conformable for the product AB if
 - Both A and B are square
 - Number of rows of A = number of columns of B
- The transpose of a square matrix is a
 - A) Row matrix
 - Square matrix
- 63. If A is any matrix then its additive inverse is
 - A
 - A^t

- The set of whole numbers B)
- D) The set of rational numbers
- B) A finite set
- D) Universal set
- B) Equivalent sets
- D) Over lapping sets
- $\{\Phi, \{9\}, \{11\}\}$ B)
- D) $\{\Phi, \{9\}, \{11\}, \{9,11\}\}$
- B) Φ
- D)

- D)
- - None of these
- B) $\{(1, a), (2, B)\}$
- D) $\{(1, 1), (2, 2)\}$
- B) Row matrix
- D)
- Identity matrix
- Singular matrix
 - D) Diagonal matrix
 - B) Symmetric matrix
 - D) Row matrix
- B) Both A and B are symmetric
- D) Number of columns of A = number of rows of B
 - B) Column matrix
 - D) Null matrix
 - A^{-1} B)
 - D) -A

www.entrytest.com

64. [300 030 | is a -----

003

- A) Diagonal matrix
- C) Triangular matrix
- **65.** If A is singular then |A| = ----
 - A)
 - C) 0
- **66.** If A and B are non singular matrices then $(AB)^{-1} = -----$

 - $A^{-1}B^{-1}$ C)
- **67.** The transpose of a column matrix is a -----
 - Zero matrix
 - C) Column matrix
- **68.** The transpose of a zero matrix is a-----
 - Column matrix
 - C) Row matrix
- **69.** Roots of the equation $x^2 7x + 10 = 0$ are
 - $\{2, -5\}$ A)
 - $\{2, 5\}$
- **70.** $4^{1+x} + 4^{1-x} = 10$ is called -----
 - Reciprocal equation
 - Radical equation
- **71.** $W^{15} = -----$
 - A)
 - C)
- **72.** The quadratic formula is

A)
$$X = \frac{b \pm \sqrt{b^2 - 4aa}}{2a}$$

C)
$$X = \frac{-b \pm \sqrt{b^2 + 4ac}}{2a}$$

- 73. The roots of the equation $ax^2 + Bx + c = 0$ are real and equal if
 - $B^2-4ac<0$ A)
 - $B^2 4ac \ge 0$ C)
- **74.** Roots of the equation $x^2 + 5x 1 = 0$ are
 - Rational A)

4

- Complex
- 75. The sum of the four fourth roots of unity is

 - 1
- 76. The polynomial x a is a factor of the polynomial f(x) if and only if
 - F(a) is positive

- B) Scalar matrix
- D) Identity matrix
- B)
- None of these D)
- B)
- B-1A-1 D)
- Diagonal matrix B)
- Row matrix D)
- B) Zero matrix
- Scalar matrix D)
- $\{-2, 5\}$
- $\{-2, -5\}$
- Exponential equation
- None of these
- B)
- 1 \mathbf{W}^2 D)

$$X = \frac{-b \pm \sqrt{b^2 - 4ac}}{a}$$

B)
$$X = \frac{-b \pm \sqrt{b^2 - 4ac}}{a}$$
D)
$$X = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- $B^2 4ac = 0$ B)
- D) None of these
- B) Irrational
- D) None of these
- B) 3
- 0 D)
- B) F(a) is negative

www.entrytest.com

α	T()	\sim
(')	F(a) =	()

77. If ω is complex cube root of unity then $\omega^2 = ----$

- C)
- **78.** If α , β are roots of $2x^2 4x + 5 = 0$ then $\alpha^2 \beta + \alpha \beta^2 = -----$

 - 5 C)
- **79.** $X^3 + 2x^2 3x + 5$ is -----
 - A Quadratic equation A)
 - C) Proper rational fractions

 - C) Proper fraction

- D) None of these
- B)
- ω^{-1} D)
- B) -1
- D) 2
- B) A polynomial
- D) Improper rational fraction
- 80. A fraction in which the degree of the numerator is less than the degree of the denominator is called
 - A) Polvnomial

- - Equation Improper fraction D)

PHYSICS:

Directions: For each question below you are given four choices. SELECT ANY ONE THAT IS MOST

APPROPRIATE ANSWERALL ANSWER MUST BE GIVEN ON THE ANSWER SHEET.

YOUR ANSWERS MUST BE INDICATED BY LETTERS (A, B, C, D) AND NOT BY THE WORDS THEMSELVES.

- **81.** Einstein explained the photo-electric effect making the following assumption as a basis that,
 - The mass of the electrons increases
- Light consists the photons or quanta (b)
- The energy of light increases with (c) speed
- The photo-electrons are identical with atomic electrons
- An elevator initially accerlerates upward from rest and ascends with uniform speed. Time period of a 82. simple pendulum in the elevator will,
 - Increase and then (a) decrease
- Decrease and then increase
- (c) Increase
- (d) Decrease
- A simple arrangement by means of which e.m.f,s. are compared is known 83.
 - Voltmeter (a)
- **Pot**entiometer
- (c) Ammeter
- None of the (d) above
- 84. The physics underlying the operation of a refrigerator most closely resembles the physics underlying,
 - The freezing of (a)

water

- (b) The melting of ice (c)
- The evaporation of water
- (d) A heat engine
- 85. Let a certain body of mass 'm' placed on a horizontal surface move down the inclined plane then downward component of weight is
 - (a) .mgCosθ
- (b)
- $.mgSin\theta$
- (c)
- .mg $Tan\theta$
- (d) None
- The plane faces of two identical plano convex lens, each having focal length 40 cm are pressed against each other to form a usual convex lens. The distance from this lens at which an object must be placed to obtain a real, inverted image with magnification one is.
 - (a) 40 cm
- (b) 80 cm
- (c) 20 cm
- (d) 60 cm

Career Channel

www.entrytest.com

- **87.** The law which gives definition of force is
 - (a) Newton's law of gravitation

(b) Third law of motion

(c) Second law of motion

- (d) First law of motion
- 88. Hygrometer is an instrument used for measuring
 - The compression of water vapour with (a) temperature
 - Specific gravity of air (c)

- The amount of water vapour in the (b) atmosphere
- The density of air (d)
- 89. An inertial frame of reference is one whose:
 - Acceleration is zero
 - (c) Acceleration is uniform

- Velocity is changing with time
- Inertia is not zero (d)
- 90. A moving car whose engine is switched off. comes to rest after some time due to:
 - Inertia
- (b) Its mass
- (c) Friction
- Earth's (d) gravitation

- 91.
- When two bodies separate instantaneously after collision, the collision is said to be perfectly elastic.
- (b) When to bodies separate instantaneously after collision, the collision is said to be perfectly inelastic
- 92. According to the second law of motion, acceleration is proportional to:
 - (a) Fores
- (b) Time

Mass

- (d) Distance
- **93.** When the object is placed at 2f of convex lens then the image formed behind the lens will be
 - A) At the focus
- At 2f
- Beyond 2f
- D) Between f and 2f
- 94. When the object is placed at principal focus of a convex lens then the image is formed at
 - A) Same distance
- **Infinity**
- C) Same side of lens D)
- Centre of curvature
- 95. Which one of the following cannot measure wavelength of X-rays in any way
 - A) Bragg's law
- Diffraction grating
- C) Compton effect
- Photo electric D) effect
- **96.** Which one of the following properties is not found in both sound and light
 - Interference
- Diffraction B)

Polarization

- D) Reflection
- 97. The relation between time period T and angular velocity ω is given by
 - (a) $T = 2 \pi \omega$
- (b) $T = \omega/2\pi$

- (c) $T = 2\pi / \omega$
- (d) $T = v \omega$
- When a body moves in a circle, the angle between its linear velocity v and angular velocity ω is

(b) 45°

- (c) 90^0
- (d) 180°

- 99. Π radians =
- 180^{0} (b)

- 60^{0} (c)
- 30^{0} (d)
- In racing car moving along a circular path the friction at the wheels and banking of roads provides the

Career Channel

www·entrytest·com

	(a)	Centripetal Force	(b)	Centripetal Acceleration	(0	·)	Centre of Mass		(d)	Centrifugal Force
101.		me period is defined One radian	as the	-	averse		y a revolvii Ine revolut	_	ody. (d)	90 degrees
102.		h of the following pa α-particle		s can induce artificia β-particle	al radio-a (c)	ctivity γ-parti				the above
103.		fy the alpha-particle ₁ H ¹	? (b)	$_{1}\mathrm{H}^{2}$	(c)	$_{1}\mathrm{H}^{3}$	(d)		₂ He ⁴	
104.		h of the following pa α-particle	rticle (b)	s move with velocity β-particle	y of light (c)	? γ-parti	icle (d)	All of	the above
105.		orque on a body will 90 ⁰	be ze	ro if the angle between 180^0	een \vec{r} and \vec{c} .	d F is z	ero or:		None	
106.		is kinetic energy of 10 Joules	a body b.	y of mass 10 kg mov 20 Joules	ving with c.	velocit 5 Joul	-	l. :	2.5 Jou	les
107.	a. 7	h of the following list Fime, temperature, v Velocity, acceleratio	elocit	у	consists of b. d.	Force,	vectors: volume, n acceleration			
108.	result	o forces each of mag ant will be 5N	nitude b.	5N act along the sa 10N	c.	on a boo	dy, then the		gnitud 30N	le of their
109.		ed force F on a body m/a	of m	ass m, moving with a/m	accelerat c.	ion a is ma	s d	l. :	m : a	
110.	Th A C		ely sn	nall bodies	B) D)	World All of	l of extrem	ely l	arge b	oodies
111.	Th A C		ely sn	nall bodies	B) D)	World All of	l of extrem them	ely l	arge b	odies
112.	Th A C		which	deals with the atom	nic nuclei B) D)	Atom	ed ic physics rn physics			
113.		ne branch of physics Nuclear physics	in wh	ich we study the stru	,	d prope Mode	1 .		s calle	ed
114.		ne quantities which c) Scalar quantities		be defined in terms	,	physica Vecto		s are	called	i

Career Channel

www·entrytest·com

115.	Graphically a vector is represented by an arrow h which represents	ead with	a directed line according to a chosen scale
	A) The direction	B)	Orientation
	C) Magnitude	D)	All of them
116.	In Cartesian co-ordinate system, usually the x-axi	is is take	n as the (1) vertical axis (11) horizontal axis
	A) A only	B)	Bonly
	C) A & B only	D)	All of them
117.	Sum of the magnitudes of y-components of two v	ectors w	which are to be added is equal to the
	A) x- component of the resultant	B)	y-component of the resultant
	C) Both of them	Ď)	None of them
118.	The cross product between two vectors will be m	aximum	if the two vectors are
	A) Perpendicular to each other	B)	Parallel to each other
	C) Both of them	Ď)	None of them
119.	The perpendicular distance from the line of action	n of force	e to the pivot point is called
	A) Couple arm	B)	Angular distance
	C) Moment arm	D)	None of them
120.	A body is said to be in a state of complete equilibriu	m if	
	A) Its translational acceleration is zero	B)	Its rotational acceleration is zero
	Its rotational as well as translational		Its angular momentum is zero
	C) acceleration is zero	D)	C
121.	A change in position of a body from its initial position	to its fir	nal position is known is known as
	A) Relative motion	B)	Displacement
	C) distance	D)	Acceleration
122	Velocity is a		
	A) Scalar quantity	B)	Vector quantity
	C) Constant quantity	D)	None of them
123.	The velocity of a body at any instant of its motion is l	known as	S
	A) Average velocity	B)	Instantaneous velocity
	C) Uniform velocity	D)	None of them
124.	The velocity-time graph of a car is a straight line wh	ich rises	the same height for equal intervals, of time,
	if it moves with		
	A) Zero velocity	B)	Constant velocity
	C) Zero acceleration	D)	Constant acceleration
125.	11	ately an e	-
	A) Non- inertial frame	B)	Inertial frame
	C) Accelerating frame	D)	None of them
126.	The time of flight of a projectile motion equal to		
	A) Half of the time to reach maximum height	B)	Twice the time to reach maximum height
	C) One fourth of time to reach maximum height	D)	Time to reach maximum height

Career Channel

www·entrytest·com

127.	The work done, one a pail of water when a person hol be	ding the	e pail by the force F is moving forwar
	A) Positive	B)	Negative
	C) Zero	D)	None of them
128.	If the angle θ between the force and displacement is	greater t	han 90, then the work done will be
	A) Positive	B)	Negative
	C) zero	D)	Maximum
129.	If work is done at the rate of 1000 joules per secon	nd, then	the power of machine is
	A) One watt		3) One kilowatt
	C) Half - watt	Ι	O) One megawatt
130.	According to the work-energy principle, work done of	n a body	y is always
	A) Less than the change in its K. E	B)	Greater than the change in its K. E
	C) Equals to the change in its K. E	D)	None of them
131.	We can obtain bio-gas by rotting of bio-mass in a clo	sed tank	called
	A) Tanker	B)	Boiler
	C) Container	D)	Digester
132.	A layer of a rock holding water that allows water to	_	
	A) Aquifer	B)	1
	C) Both of these	D)	None of these
	the direction associated with the angular displacement i		D
	A) Along the radius	B)	Perpendicular to radius
	C) Along the axis of rotation	D)	All of them
134.	Which of the following quantity has direction along the		
	A) Angular displacement	B)	Angular velocity All of them
105	C) Angular acceleration	D)	An or them
135.	The three angular equations hold true in the case whe A) There is no fixed axis of rotation	en B)	There is a axis of rotation
	C) There is no axis of rotation	D)	All of them
136.		,	
130.	The force which is needed to move the body in circula A) Centrifugal force	ai patii i B)	Centripetal force
	C) Gravitational force	D)	None of them
137.	The moment of inertia depends upon		1,010
137.	A) Mass of the object	B)	Square of the radius
	C) Both of them	D)	None of them
138.	Who says that gravity follow an inverse square law (excent i	n strong gravitational fields)?
	A) Einstein	B)	Newton
	C) Plank	D)	Maxwell
139.	Einstein's theory was hailed as	•	
	A) Natural triumph	B)	Scientific triumph
7	C) Both of them	D)	None of them

www·entrytest·com

140	A cl	hange in position of a	a body	from its initial no	sition to its t	final position is	knowi	n is kr	nown as
140.	A)	Relative motion	a oody	nom its initial po	B)	Displacemen		II 15 KI	iowii us
	C)	distance			D)	Acceleration			
CHE	MIC	TRY:							
Dire			on helov	v you are given fou	r choices. SE	LECT ANY ONE	THAT	IS MC	OST.
20.0		PPROPRIATE ANSWE		r you are given you	enorees. SE		111111		
				T BE GIVEN ON			D) 437		
	R	YOUR ANSWE Y THE WORDS THE		IST BE INDICAT. VES	ED BY LET.	TERS (A, B, C,	D) AN.	D NO	
	D.	THE WORDS THE	MISEL	VES.					
141.	-	odumene is the miner	ral of						
	(a)	Lithium	(b)	Sodium	(c)	Potassium		(d)	None
142.		icate the most viscou	-						
	(a)	H_2O	(b)	CH₃OH	(c)	CH ₃ CH ₂ OCH ₂	CH ₃	(d)	CH ₃ OCH ₃
143.		which of the following		_					
	` '	$NO_2^- \rightarrow NO_3^-$	(b)	$NO_2^- \rightarrow NO_2^-$	(c)	$NO_2^- \rightarrow NO_3^-$		(d)	$NH_4^+ \rightarrow N_2$
144.		nich is not the minera	ıl of Sil	icon					
	(a) (c)					(b) Asbestos(d) Zircon			
145	` '	ostance that affects th	a mata c	of manation but non			f tha ma	ooti or	via called
145.	Sub	stance that affects th	ie raie (of reaction but fen	nams unante	red at the end o	i uie ie	actioi	i is called
	(a)	Catalyst	(b)	Acid	(c)	Base	(d)	Non	e of the above
146.	If o	one mole of solute is	dissolv	ed in one liter of	solution, the	solution is call	ed		
	(a)	None of the	(b	One molal	(c)	One molar		(d)	One normal
	, ,	following			. ,				
147.		ne gram equivalent o							
	(a)	One normal	(b)	One molal	(c)	One molar	(d)		one of the above
148.		constant temperature	, volun	ne of a given mass	s of a gas is	inversely propo	ortiona	l to pr	essure exerted on
	(a)	s called Coulomb's Law	(b)	Boyle's Law	(c)	General Gas L	aw	(d)	Charles Law
1/10	` ′	ry small and very lar	` /	•	` '			(4)	Charles Law
147.		Significant igures		_		of these (d)	Expo	onenti	al notation
150.		e number of atoms or	, ,		, ,	, ,	•		
									None of the
	(a)	Molecularity	(b)	Rate of reaction	(c)	Order of react	on	(d)	above
151.	Ele	ctrolytes which ioniz	ze to a v	very small extent	in a solution	are called			

www·entrytest·com

	(a)	Neutral	(b)	Weak electrolytes	(c)	Strong electolytes	(d)	None of the above
152.	The	change of concentrat	ion of	reactants or products	is calle	d,		
	(a)	Order of reaction	(b)	Rate of reaction	(c)	Molecularity	(d)	None of the above
153.	Reac	tions which proceed	in the	forward direction and	go to c	completion are called		
	(a)	Irreversible reaction	(b)	Equilibrium reaction	(c)	Reversible reaction	(d)	None of the above
154.	The	substance through w	hich e	lectricity cannot flow	in molt	en state or solution fo	orm is	called,
	(a)	Molecularity	(b)	Conductor	(c)	Electrolyte	(d)	Non electrolyte
155.	The	law which states, "T	he am	ount of heat evolved o	or absor	bed in a process in th	e same	e whether the
	-	ess takes place in on	e or se	everal steps is called				
	(a)	Newton's law			(b)	First law of thermod	-	
	(c)	Hess's law			(d)	Law of conservation	of end	ergy
156		The metamol course of	. CO :					
156.		The natural source of A) Bacterial actio		S	B)	Volcanoes		
		C) Automobiles	11		D)	Oxidation of CH ₄ i	in the a	atmosphere
157.		The major source of	CO in	the atmosphere is				•
		A) Combustion of			B)	Motor vehicles (fu	el burr	ning)
		C) Both a & b			D)	None		
158.			_	tement about the orga	nic che	_		
		A) At high conc. to blindness			B)	At low conc. Thes tasteful	e com	pounds become
		-		th carcinogenic	D)			-
159.		-	ılation	can remove the suspe			more	than
		A) 70% C) 90%			B) D)			
160.			es har	d when it contains the	,	None of above		
1001		A) Calcium		a when it contains the	B)	Sodium		
		C) Sulphur			D)	None		
161.				ble to those of inorgar	nic com			
		A) Ionic propertie			B)	0	ong cha	ain or rings
160		C) Chemical force			D)	Isomerism		
162.		Rates of organic read A) Fast	ctions	are	D)	Vory fact		
		A) FastC) Slow			B) D)	Very fast Non-reactive		
163.		Hybridization explai	n the	of orbitals	D)	Tion reactive		
1		A) Shapes		or oronary	B)	Type of Bonding		

www.entrytest.com

\mathbf{C}	Both a & b	D.) None	of above
C)	\mathbf{D} 0111 $\mathbf{a} \propto 0$	υ) INOIR	or abov

- 164. The rotation of two carbon atoms joined by double bond would happened only if
 - Pi bond is broken

Sigma bond is broken B)

C) Both bonds are broken

- D) None of above
- Isomerism is only possible when the compound contains more than 165.
 - Two carbon atoms A)

Three carbon atoms

Four carbon atoms C)

D) Five carbon atoms

Write the name of following compound
$$CH_3$$
 - HC - CH_2 - HC = CH - CH_3

A)
$$5 - \text{methyle} - 2 - \text{hexene}$$

- 2- methylehexene B)
- 4 ethyle 2 methylehexene
- 3 ethyle 3 methyl hexeneD)
- Kolb's method has limited synthetic applications due to **167.**
 - Expensive catalysis

- Slow reaction
- Number of side products produced
- Salts used are very expensive D)
- 168. The unreactivity of alkanes is based upon
 - Inertness of sigma-bond

 - C) Both a & b

- B) Non-polarity of the bonds
- None of above
- 169. Complete combustion of alkane yields
 - $CO_2 + H_2O$
 - C) $CO + H_2O$ heat

- B) CO_2 + heat
- $CO_2 + H_2O + heat$
- The major reaction occurring in the engines of automobiles is 170.
 - Oxidation

B) Reduction

C) Combustion D) Decomposition

ENGLISH:

For each question below you are given choices. SELECT ANY ONE THAT IS MOST Directions: APPROPRIATE ANSWER

SENTENCE COMPLETION

Directions

Each sentence below has one or two blanks, each blank indicating that something has been omitted. Beneath in sentence are five lettered words or sets of words. Choose the word or set of words that best fits the meaning of the sentence as a whole.

- 171. Miss Watson termed Hock's behavior because in her opinion noting could excuse his deliberate disregard of her commands.
 - devious

B. intolerant

Irrevocable

D. indefensible

- **Boisterous**
- Either the surfing at Maui is_____, or I went there on an off day.
 - Consistent

B. Thrilling

Career Channel

www·entrytest·com

C E		Invigorating Scenic	D.	Overrated
173.	You A.	rr remarks spoil the effect of your speech innocuous	; try B.	not to stray from your subject. Digressive
	C. E.	Derogatory Enigmatic	D.	Persistent
174.	We A. C.	need both ornament and implement in our society beautician politician		e need the artist and the Writer Artisan
175	A.	Model en such remarks are circulated, we can or adulatory	nly b B. D.	Chance
176.	not A.	reprehensible stereotypical image of masculinity assumes that simply a human reaction which may be by Inexplicably. repented Essentiallydefined	wee either B.	redundant ping is" unmanly" behaviour, and er sex. Excessivelydiscerned Inherentlyadopted
ANAL	<u>OGI</u>	<u>ES</u>		

Direction: Each question below consists of a related pairs of words or phrases, followed by five lettered pairs of words or phrases, Select the lettered pair that best expresses a relationship similar to that expressed in the original pair.

177. FRAGILE: BREAK::

> (a) vital: destroy (b) hostile: invite (c) vivid: grow (d) flexible: bend (e) fertile: smell

178. TELLER: BANK::

> (a) Artist: museum (b) Cashier: check (c) Waiter: restaurant (d) Borrower: loan (e) Mourner: funeral

179. INNING: BASEBALL::

> (a) round: boxing (b) puck: hockey

(c) touchdown: football

(d) serve : tennis (e) outing : hiking

DEGREE : TEMPERATURE ::

(a) ounce: weight

www·entrytest·com

(b) fathom: volume(c) mass: energy(d) time: length(e) light: heat

181. PICK : GUITAR ::

(a) peg : ukelele
(b) string : banjo
(c) pipe : organ
(d) bow : violin
(e) head : tambourine

ANTONYM

<u>Direction</u>: In each of the following antonym questions, a word printed in capital letters precedes five lettered words or phrases. From these five lettered words or phrases, pick the one most nearly <u>opposite</u> in meaning to the capitalized word.

182. OMNIPOTENT:

Safe (A) Weak (B) Strong (C) Sour (D) 183. **NERVOUS:** Bold (D)Courageous Puzzle Trainee (A) (B) (C) 184. **NOTORIOUS:** Inactive **Fashionable** (A) Renowned (B) Invincible **(C)** (D) 185. **NOCTURNAL:** Patrolling (C) Harsh (A) (B) Daily (D) Marauding 186. **OBDURATE:** Fleeting **Finite** Yielding (A) (B) (D) Permanent

READING COMPREHENSION

Direction: Please read the passage below and answer the questions on the basis of what is stated or implied.

Passage:

To be happy and really safe, one ought to have at least two or three hobbies and they must all be real. It is no use starting late in life to say "I will take an interest in this or that". A man may acquire great knowledge of topics unconnected with his daily work and yet hardly get any benefit or relief.

QUESTIONS

188.

189.

- **187.** The writer argues that for real happiness
 - A) More than one hobbies are preferableC) Hobbies are quite important
- B) Two or three hobbies are essentialD) Hobbies should be interesting
- The phrase 'ought to' in the first sentence suggests
- A) Liking
- B) Likelihood
- The words 'this or that' in the second sentence refer to
- A) Hobbies
 - B) Topics

 None of the ol

Preference

C) Daily work

C) Compulsion

D) None of the above

www.entrytest.com

- 190. Select the choice closest in meaning to the word 'hardly' in the last sentence
 - A) Rarely

B) Never

C) Infrequently

D) Scarcely

INTELLIGENCE:

Directions: For each question below you are given choices. SELECT ANY ONE THAT IS MOST APPROPRIATE ANSWER

- 191. Look at this series: 2, 1, (1/2), (1/4), ... What number should come next?
 - A.
 - B. (1/8)

(1/3)

- C. (2/8)
- D. (1/16)
- 192. Look at this series: 7, 10, 8, 11, 9, 12, ... What number should come next?
 - A.
- 7
- B. 10
- C. 12
- D. 13
- 193. Look at this series: 36, 34, 30, 28, 24, ... What number should come next?
 - A.
- 2022

15

14

- B. C.
 - 23
- D. 26
- Look at this series: 31, 29, 24, 22, and 17, What number should come next?
 - A.
 - В.
 - C. 13
 - D. •
- **195.** A man is facing west. He turns 45 degree in the clockwise direction and then another 180 degree in the same direction and then 270 degree in the anticlockwise direction. Find which direction he is facing now?
 - A. South-West

B. West

C. South

- D. East-South
- 196 A man is facing north. He turns 45 degree in the clockwise direction and then another 180 degree in the same direction and then 45 degree in the anticlockwise direction. Find which direction he is facing now?
 - A. North

B. East

www.entrytest.com

Crater

C. West D South

197. The earth consists of three main zones; hydrosphere; lithosphere and

Current

A) Atmosphere B) Ionosphere C) Photosphere D) None of these

C)

198. What is called flow of a body of water, air, of heat, moving in a definite direction?

,

RIMCALSE

B)

199. By which name Lahore is famous?A) City of Market B) City of people C) City of Colleges D) None of these

Core

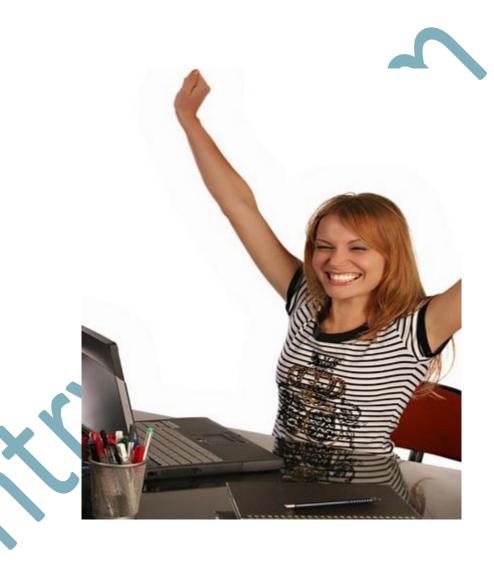
200. In a certain case GIGANTIC is written as GIGTANCI. How is MIRACLES written in that code?

A. MIRLCAES

Mantel

C.

B. MIRLACSE


D. RIMLCAES

END OF TEST

For Answer Key: www.entrytest.com/testprep/answers.aspx

www·entrytest·com

Downloaded More Sample Papers from: www.admission.pk
Downloaded More Sample Papers from: www.entrytest.com

For Online Test Preparation: www.thecatonline.com